36 research outputs found

    Impacts of climate change on storms and waves relevant to the coastal and marine environment around the UK

    Get PDF
    We have updated the review by Woolf and Wolf (2013) by summarising the results of the IPCC AR5 report for storms and waves and then including more-recent work published since 2013. There are similar conclusions: wavemodel results are controlled largely by the quality of the wind data used to drive them, and the forcing climate models have slightly improved in accuracy as well as resolution. In general, trends are obscured by wide natural variability and a low signal-to-noise ratio. Assessment of changes in storminess and waves over the last 200 years are limited by lack of data, while future projections are limited by the accuracy of climate models. Recent work has led to more insight in some areas. There are now more climate- and wave- model ensembles, more in-depth assessments of the results of CMIP5, and the CMIP6 project and IPCC AR6 assessments have started. There is a move towards higher-resolution models, which give better accuracy for simulation of tropical and extra-tropical storms. Further work is being done with coupled atmosphere-ocean-wave models, which give insight into key dynamic processes. There is evidence for an increase in North Atlantic storms at the end of the 20th Century. Some projections for North Atlantic storms over the 21st Century show an overall reduced frequency of storms and some indication of a poleward shift in the tracks, in the northern hemisphere (NH) winter, but there is substantial uncertainty in projecting changes in NH storm tracks, especially in the North Atlantic. Projections for waves in the North Atlantic show a reduction in mean wave height, but an increase in the most-severe wave heights. There is a likelihood of larger wave heights to the north of the UK as the Arctic sea ice retreats and leads to increased fetch

    Entrances and exits: changing perceptions of primary teaching as a career for men

    Get PDF
    Original article can be found at: http://www.informaworld.com/smpp/title~content=t713640830~db=all Copyright Informa / Taylor and Francis. DOI: 10.1080/03004430802352087The number of men in teaching has always been small, particularly in early childhood, but those that do come into teaching usually do so for the same reasons as women, namely enjoyment of working with children, of wanting to teach and wanting to make a difference to children's lives. However, in two separate studies, the authors have shown that on beginning teacher training in 1998, and at the point of leaving the profession in 2005, men and women tend to emphasise different concerns. This article will explore those differences and seek possible explanations for how men's views of teaching might be changing over time.Peer reviewe

    Uncertainties in shoreline projections to 2100 at Truc Vert Beach (France): Role of sea‐level rise and equilibrium model assumptions

    Get PDF
    Sandy shorelines morphodynamics responds to a myriad of processes interacting at different spatial and temporal scales, making shoreline predictions challenging. Shoreline modeling inherits uncertainties from the primary driver boundary conditions (e.g., sea-level rise and wave forcing) as well as uncertainties related to model assumptions and/or misspecifications of the physics. This study presents an analysis of the uncertainties associated with future shoreline evolution at the cross-shore transport dominated sandy beach of Truc Vert (France) over the 21st century. We explicitly resolve wave-driven shoreline change using two different equilibrium modeling approaches to provide new insight into the contributions of sea-level rise, and free model parameters uncertainties on future shoreline change in the frame of climate change. Based on a Global Sensitivity Analysis, shoreline response during the first half of the century is found to be mainly sensitive to the equilibrium model parameters, with the influence of sea-level rise emerging in the second half of the century (∟2050 or later), under several simulated scenarios. The results reveal that the seasonal and interannual variability of the predicted shoreline position is sensitive to the choice of the wave-driven equilibrium-based model. Finally, we discuss the importance of the chronology of wave events in future shoreline change, calling for more continuous wave projection time series to further address uncertainties in future wave conditions. Our contribution demonstrates that unmitigated climate change can result in shoreline retreat of several tens of meters by 2100, even for sectors that have been stable or slightly accreting over the last century

    Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore

    Get PDF
    Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea-level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time mean sea level were evaluated using the process-based climate model data and methods presented in the IPCC AR5. Regional surge and wave solutions extending from 1980 to 2100 were generated using ~ 12 km resolution surge (Nucleus for European Modelling of the Ocean – NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled (~ 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980–2010, enabling a quantitative assessment of model skill. Simulated historical sea surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m (0.74 m) under the RCP 4.5 (8.5) scenarios respectively. Trends in surge and significant wave height 2 year return levels were found to be statistically insignificant and/or physically very small under the more severe RCP8.5 scenario. We conclude that changes to long-term mean sea level constitute the dominant signal of change to the projected inundation risk for Singapore during the 21st century. We note that the largest recorded surge residual in the Singapore Strait of ~ 84 cm lies between the central and upper estimates of sea level rise by 2100, highlighting the vulnerability of the region

    A global ensemble of ocean wave climate statistics from contemporary wave reanalysis and hindcasts

    Get PDF
    There are numerous global ocean wave reanalysis and hindcast products currently being distributed and used across different scientific fields. However, there is not a consistent dataset that can sample across all existing products based on a standardized framework. Here, we present and describe the first coordinated multi-product ensemble of present-day global wave fields available to date. This dataset, produced through the Coordinated Ocean Wave Climate Project (COWCLIP) phase 2, includes general and extreme statistics of significant wave height (Hs), mean wave period (Tm) and mean wave direction (θm) computed across 1980–2014, at different frequency resolutions (monthly, seasonally, and annually). This coordinated global ensemble has been derived from fourteen state-of-the-science global wave products obtained from different atmospheric reanalysis forcing and downscaling methods. This data set has been processed, under a specific framework for consistency and quality, following standard Data Reference Syntax, Directory Structures and Metadata specifications. This new comprehensive dataset provides support to future broad-scale analysis of historical wave climatology and variability as well as coastal risk and vulnerability assessments across offshore and coastal engineering applications

    Impact assessment for the improved four boundary conditions (at bed, free-surface, land-boundary and offshore-boundary) on coastal hydrodynamics and particulate transport

    Get PDF
    The FIELD_AC project aims at providing an improved operational service for coastal areas and at generating added value for shelf and regional scale predictions. Coastal-zone oceanographic predictions seldom appraise the land discharge as a boundary condition. River fluxes are sometimes considered, but neglecting their 3D character, while the "distributed" continental run-off is not taken into consideration. Moreover, many coastal scale processes, particularly those relevant in geographically restricted domains (coast with harbors or river mouth areas), are not well parametrized in present simulations.Work package 3 dedicated to Boundary Fluxes aims to establish and use the best possible boundary conditions for coastal water quality modelling. On this scale, all boundaries become important. For the land boundary side the needed products are distributed and point wise run-off both quantitatively and qualitatively. For the offshore boundary condition, 3D current, water quality field, and wave spectra will be used. For the atmospheric boundary, products from local scale meteorological models (wind, atmospheric pressure and rainfall) are needed. For the seabed, boundary information on sediment composition, bedforms and bathymetry and bio-geo-chemical parameters is essential.This report addresses the impact assessment for improvements in the four boundary conditions (boundary fluxes from land, free-surface boundary condition, seabed boundary condition and open boundary fluxes) on coastal hydrodynamics and particulate transport. The description of the improved four boundary conditions is followed by examples of concrete impact assessment of the theory into the Catalan coast, Liverpool Bay, German Bight and Gulf of Venice

    Climate change hotspots and implications for the global subsea telecommunications network

    Get PDF
    A global network of subsea telecommunications cables underpins our daily digital lives, enabling >95% of global digital data transfer, $trillions/day in financial trading, and providing critical communications links, particularly to remote, low-income countries. Despite their importance, subsea cables and their landing stations are vulnerable to damage by natural hazards, including storm surges, waves, cyclones, earthquakes, floods, volcanic eruptions, submarine landslides and ice scour. However, the likelihood or recurrence interval of these types of events will likely change under future projected climate change scenarios, compounded by sea-level rise, potentially increasing hazard severity, creating previously unanticipated hazards, or hazards may shift to new locations during the 20–30-year operational life of cable systems. To date, no study has assessed the wide-reaching impacts of future climate change on subsea cables and landing stations on a global scale. Here, for the first time we synthesize the current evidence base, based on published peer-reviewed datasets, to fill this crucial knowledge gap, specifically to assess how and where future climate change is likely to impact subsea cables and their shore-based infrastructure. We find that ocean conditions are highly likely to change on a global basis as a result of climate change, but the feedbacks and links between climate change, natural processes and human activities are often complicated, resulting in a high degree of geographic variability. We identify climate change ‘hotspots’ (regions and locations likely to experience the greatest impacts) but find that not all areas will be affected in the same manner, nor synchronously by the same processes. We conclude that cable routes should carefully consider locally-variable drivers of hazard frequency and magnitude. Consideration should be given both to instantaneous events (e.g. landslides, tropical cyclones) as well as longer-term, sustained impacts (e.g. seabed currents that circulate even in deep water). Multiple factors can combine to increase the risk posed to subsea cables, hence a holistic approach is essential to assess the compounded effects of both natural processes and human activities in the future

    Global ocean wave fields show consistent regional trends between 1980 and 2014 in a multi-product ensemble

    Get PDF
    Historical trends in the direction and magnitude of ocean surface wave height, period, or direction are debated due to diverse data, time-periods, or methodologies. Using a consistent community-driven ensemble of global wave products, we quantify and establish regions with robust trends in global multivariate wave fields between 1980 and 2014. We find that about 30-40% of the global ocean experienced robust seasonal trends in mean and extreme wave height, period, and direction. Most of the Southern Hemisphere exhibited strong upward-trending wave heights (1-2 cm per year) and periods during winter and summer. Ocean basins with robust positive trends are far larger than those with negative trends. Historical trends calculated over shorter periods generally agree with satellite records but vary from product to product, with some showing a consistently negative bias. Variability in trends across products and time-periods highlights the importance of considering multiple sources when seeking robust change analyses

    Global ocean wave fields show consistent regional trends between 1980 and 2014 in a multi-product ensemble

    Get PDF
    Historical trends in the direction and magnitude of ocean surface wave height, period, or direction are debated due to diverse data, time-periods, or methodologies. Using a consistent community-driven ensemble of global wave products, we quantify and establish regions with robust trends in global multivariate wave fields between 1980 and 2014. We find that about 30–40% of the global ocean experienced robust seasonal trends in mean and extreme wave height, period, and direction. Most of the Southern Hemisphere exhibited strong upward-trending wave heights (1–2 cm per year) and periods during winter and summer. Ocean basins with robust positive trends are far larger than those with negative trends. Historical trends calculated over shorter periods generally agree with satellite records but vary from product to product, with some showing a consistently negative bias. Variability in trends across products and time-periods highlights the importance of considering multiple sources when seeking robust change analyses.publishedVersio

    Career changers and fast-track induction: teacher perspectives on their early professional development

    Get PDF
    In this article, the early professional development of mature, early career teachers who entered the profession via an employment-based route to teaching in England is presented and explored from the teachers’ own perspectives. From a larger sample in a longitudinal study, the development of four career changers is traced in detail, using a model of professional learning which highlights teaching and professional skills. There is some evidence that those who undertake the programme experience a smoother induction into teaching than those from more traditional routes, although the internship year itself is challenging and demands a high level of commitment and resilience on the part of the pre-service teachers. Contextual factors, such as school support and learning from experienced teachers, are vital in enabling early professional development and the absence of these can hinder learning and self-confidence. Findings are analysed with reference to the model, as well as research on teachers’ development, within a socio-cultural learning framework. The study makes a valuable contribution to knowledge about the professional development of mature entrants to teaching
    corecore